The Respiratory System Physiology

Part Two

Dr. A. K. Goudarzi, D.V.M. Ph.D

Department of Basic Sciences School of Veterinary Medicine I.A. University, Karaj Branch

GAS EXCHANGE

Partial Pressure of Gases (P_{gas})

- Concentration of gases in a mixture (air)
- Gases move from areas of high partial pressure to areas of low partial pressure
- Movement of gases also occurs between cells and the blood in the capillaries
- Movement of gases occurs between blood in the pulmonary capillaries and the air within the alveoli
 - Movement of gasses is by diffusion across the respiratory membrane of the alveoli

Diffusion of Gases

- Each gas in a mixture (air) tends to diffuse independently of all other gases
 - Oxygen does not interfere with carbon dioxide diffusion or vice versa
- Each gas diffuses at a rate proportional to its partial pressure gradient until it reaches equilibrium
 - This allows for two-way traffic of gases in the lungs and in the body tissues
- The total pressure exerted by a mixture of gases is the same as the sum of the pressure exerted by each individual gas in the mixture
 - $P_{air} = P_{N2} + P_{O2} + P_{H2O}$

Dalton's Law of Partial Pressure

- The partial pressure of a gas is the pressure exerted by each gas in a mixture and is directly proportional to its percentage in the total gas mixture
- Example: Atmospheric Air
- At sea level, atmospheric pressure is 760 mmHg
 - Air is ~78% Nitrogen
 - The partial pressure of nitrogen (P_{N2}) is:
 - $0.78 \times 760 \text{ mmHg} = P_{N2} = 593 \text{ mmHg}$
 - Air is ~ 21% Oxygen
 - The partial pressure of oxygen (P_{O2}) is:
 - 0.21 x 760 mmHg = $P_{O2} = 160$ mmHg
 - Air is ~ 0.04% carbon dioxide
 - The partial pressure of carbon dioxide (P_{CO2}) is:
 - $0.0004 \text{ x } 760 \text{ mmHg} = P_{CO2} = 0.3 \text{ mmHg}.$

Partial Pressure: Atmospheric Air

- Composition of the partial pressures of oxygen and carbon dioxide in the pulmonary capillaries and alveolar air:
 - Pulmonary arterial capillary blood
 - P_{CO2} of pulmonary capillary blood is 45 mmHg
 - P₀₂ of pulmonary capillary blood is 40 mmHg
 - Alveolar air:
 - P_{CO2} of alveolar air is 40 mmHg
 - P₀₂ of alveolar air is 104 mmHg

Partial Pressure: Alveolar Air

- The ability of a gas to dissolve in water
- Important because O₂ and CO₂ are exchanged between air in the alveoli and blood (which is mostly water)
- Even when dissolved in water, gases exert a partial pressure
- Gases diffuse from regions of higher partial pressure toward regions of lower partial pressure

Solubility of Gases in a Liquid

- Gas exchange occurs by diffusion across the respiratory membrane in the alveoli
- Oxygen diffuses from the alveolar air into the blood
 - Alveolar air $P_{O2} = 104 \text{ mmHg}$
 - Pulmonary capillaries $P_{O2} = 40 \text{ mmHg}_{\text{planel}}$
- Carbon dioxide diffuses from the pulmonary capillary blood into the alveolar air
 - Pulmonary capillaries $P_{CO2} = 46 \text{ mm} H_{CO2}^{\text{Egdothelial}}$
 - Alveolar air $P_{CO2} = 40 \text{ mmHg}$

- Gas partial pressures in systemic capillaries depends on the metabolic activity of the tissue
- Oxygen concentrations
 - Systemic arteries $P_{O2} = 100 \text{ mmHg}$
 - Systemic veins $P_{O2} = 40 \text{ mmHg}$
- Carbon dioxide concentrations
 - Systemic arteries $P_{CO2} = 40 \text{ mm}^{(a)}$

Hb . CO.

= 40 mm

Hb . CO

Alveolar ai

• Systemic veins $P_{CO2} = 46 \text{ mmHg}$

Gas Exchange in Respiring Tissue

• 98% of O_2 is transported in combination

with hemoglobin molecules (98%)

- 2% of O_2 is dissolved and transported in the plasma
- Hemoglobin (Hb)
 - A protein found in RBCs
 - O₂ binds loosely to Hb due to its molecular structure
- Hemoglobin consists of four polypeptide chains
 - Consists of 4 globin molecules, each of which is bound to a heme group
 - The heme group contains an iron molecule, which is the site of O₂ binding
- Each Hb molecule is able to carry 4 molecules of O₂

Transport of Gases in the Blood: 02

- O₂ binds temporarily, or reversibly, to Hb
- Po, = 40 mm H • Oxyhemoglobin (HbO₂)
 - $Hb + O_2 = HbO_2$
 - Hb attached to four
 - O_2 molecules is *saturated*
 - Saturated Hb is relatively Capita unstable and easily releases
 - O_2 in regions where the P_{O2} is low
- Deoxyhemoglobin (HHb)
 - HHb = Hb + O_2

Transport of Gases in the Blood: O_2

Alveolus

Pulmonan capillaries

Alveolar air

Alveolar

- Describes the relationship between the aterial P_{O2} and Hb saturation
- The Hb- O_2 Dissociation Curve plots the percent saturation of Hb as a function of the P_{O2}

Hb Saturation

- Full saturation
 - All four heme groups of the Hb molecule in the blood are bound to O₂
 Partial saturation
 Not all of the heme groups are bound to O₂
- Partial saturation
 - O_2
- Hb saturation is largely determined by the P_{02} in the blood
- At normal alveolar P_{02} (104 mm Hg), Hb is 97.5 - 98% saturated

© 2002 Pearson Education Inc., publishing as Benjamin Cummings

Hb Unloading of O_2

- Factors that increase O_2 unloading from hemoglobin at the tissues:
 - Increased body temperature
 - Decreases Hb affinity for O₂
 - Decreased blood pH (the Bohr effect)
 - H⁺ ions bind to Hb
 - Increased arterial P_{CO2} (the Carbamino effect)

© 2002 Pearson Education Inc., publishing as Benjamin Cummings

- Based on the fact that when O₂ binds to Hb, certain amino acids in the Hb molecule release H⁺ ions
 - $Hb + O_2 \leftrightarrow HbO_2 + H^+$
 - An increase in H⁺ (a decrease in pH) pushes the reaction to the left, causing O₂ to dissociate from Hb
- Hb affinity for O_2 is decreased when H⁺ ions bind to Hb, therefore O_2 is unloaded from Hb
- H⁺ concentration increases in active tissues, which facilitates O₂ unloading from Hb so that it may be utilized by the active tissues

The Bohr Effect

- Based on the fact that CO₂ may bind to Hb
 - $Hb + CO_2 \leftrightarrow HbCO_2$
 - An increase in P_{CO2} pushes the reaction to the right, forming carbaminohemoglobin (HbCO₂)
- HbCO₂ decreases Hb affinity for O₂
 - This decreases O₂ transport in the blood
- The carbamino effect is one method of transporting CO₂ in the blood

The Carbamino Effect

• These factors are all present during exercise and enable Hb to release more O₂ to meet the metabolic demands of working tissues

- \uparrow body temperature = \downarrow Hb affinity for O₂
- \uparrow H⁺ ions (\downarrow pH) = \downarrow Hb affinity for O₂
- \uparrow arterial $P_{CO2} = \downarrow$ Hb affinity for O_2

CO_2 may be transported in the blood by...

- Dissolving in the plasma
- Dissolving as bicarbonate
- Binding to Hb (carbaminohemoglobin)

CO₂ Dissolved in Plasma

- CO₂ is very soluble in water
- ~ 5 6% of CO_2 in the blood is dissolved in plasma
- The partial pressure gradient between the tissues and blood allows CO₂ to easily diffuse from the tissues into the plasma
- The amount of CO_2 dissolved in the plasma is proportional to the partial pressure of CO_2

CO_2 as Bicarbonate (H₂CO₃)

- ~ 86 90% of CO₂ in the blood is transported in the form of bicarbonate ions
- In water, carbonic acid dissociates to release H⁺ ions and bicarbonate ions
 - $CO_2 + H_2O \iff H_2CO_3 \iff H^+ + HCO_3$ -
 - Catalyzed by carbonic anhydrase
- This chemical reaction occurs slowly in both plasma and in red blood cells
- The blood becomes more acidic due to the accumulation of CO_2

CO₂ bound to Hb (carbaminohemoglobin)

- Carbaminohemoglobin
 - CO₂ attached to a hemoglobin molecule
 - $Hb + CO_2 \leftrightarrow HbCO_2$
- ~ 5 8% of CO_2 is bound to Hb in RBCs
- CO₂ diffuses into RBCs and binds with the globin component (not the heme component) of Hb for transport to the lungs

The Chloride Shift

- CO₂ may be transported as HbCO₂ or H₂CO₃
 - H⁺ ions or bicarbonate may accumulate in RBCs
- Hb functions as a buffer for H⁺ ions
 - Hb binding to H⁺ ions forms HHb as a buffer so that RBCs do not become too acidic
 - $Hb + H^+ \leftrightarrow HHb$
- The bicarbonate ion (H_2CO_3) diffuses out of the RBC into the plasma to be carried to the lungs
 - As bicarbonate ions leave the RBC, Cl⁻ ions enter the RBC

CO₂ Exchange and Transport in Systemic Capillaries and Veins

The Haldane effect

- Loading/Unloading of CO₂ onto Hb is *directly* related to:
- 1) The partial pressure of $CO_2(P_{CO2})$
 - In areas of high P_{CO2} , carbaminohemoglobin forms
 - This helps unload CO₂ from tissues
- 2) The partial pressure of $O_2 (P_{O2})$
 - In areas of high P_{O2} (such as in the lungs), the amount of CO_2 transported by Hb decreases
 - This helps unload CO₂ from the blood
- 3) The degree of oxygenation of Hb
 - Deoxygenated Hb is able to carry more CO_2 than a Hb molecule loaded with O_2
 - The binding of O_2 to Hb decreases the affinity of Hb for CO_2

The Effect of O₂ on CO₂ Transport

REGULATION OF RESPIRATION

- The purpose of ventilation is to deliver O₂ to and remove CO₂ from cells at a rate sufficient to keep up with metabolic demands
- Breathing is under both involuntary and voluntary control
 - Normal breathing is rhythmic and involuntary
 - However, the respiratory muscles may be controlled voluntarily

Central Regulation of Ventilation

- The brainstem generates breathing rhythm
- Signals are delivered to the respiratory muscles via somatic motor neurons
- Phrenic nerve
 - Innervates the diaphragm
- Intercostal nerves
 - Innervate the internal and external intercostal muscles

Neural Control of Breathing by Motor Neurons

- Central control of respiration is not completely understood
- Research indicates that respiratory control centers are located in the brainstem
- Respiratory control centers include...
 - Medullary Rhythmicity Area of the medulla oblongata
 - Pneumotaxic Area of the pons
 - Apneustic Center of the pons

Generation of the Breathing Rhythm by the Brainstem

- Includes two groups of neurons:
 - Dorsal Respiratory Group
 - Ventral Respiratory Group

Medullary Rhythmicity Area

The Dorsal Respiratory Group

- The medullary *inspiratory* center
- Functions to generate the basic respiratory rhythm
 - The respiratory cycle is repeated 12 15 times/minute
- Dorsal neurons have an intrinsic ability to spontaneously depolarize at a rhythmic rate
- Quiet breathing Inhalation
 - The dorsal inspiratory neurons transmit nerve impulses via the phrenic and intercostal nerves to the diaphragm and external intercostal muscles
 - When these muscles contract, the lungs fill with air
- Quiet breathing Exhalation
 - When the dorsal inspiratory neurons stop sending impulses, expiration occurs passively as the inspiratory muscles relax and the lungs recoil

Medullary Rhythmicity Area

The Ventral Respiratory Group

- The medullary *expiratory* center
- Functions to promote expiration during forceful breathing
- If the rate and depth of breathing increases above a critical threshold, it stimulates a forceful expiration
- The ventral expiratory neurons transmit nerve impulses to the muscles of expiration
 - The internal intercostals
 - The abdominal muscles

Medullary Rhythmicity Area

- Includes two groups of neurons:
 - Pontine Respiratory Group
 - The Central Pattern Generator

Pneumotaxic Area

The Pontine Respiratory Group

- Facilitates the transition between inspiration and expiration
- Regulates the depth or the extent of inspiration
- Regulates the frequency of respiration

Pneumotaxic Area

The Central Pattern Generator

- A network of neurons scattered between the pons and the medulla
 - Exact location of these neurons is unknown
- Coordinates the control centers of the brainstem
- Regulates the rate of breathing
- Regulates the length of inspiration
 - Avoid over-inflation of the lungs
- Regulates the depth of breathing
 - ↑ pneumotaxic output = shallow, rapid breathing
 - \downarrow pneumotaxic output = deep, slow breathing

Pneumotaxic Area

- Receptors and reflexes monitor and respond to stimuli
- Feed information (input) to the Central Pattern Generator
- Input received from...
 - Chemoreceptors
 - Pulmonary stretch receptors
 - Detect lung tissue expansion and may protect lungs from over inflation through the Hering-Breuer reflex
 - Irritant receptors
 - Detect inhaled particles (dust, smoke) and trigger coughing, sneezing, or bronchiospasm

Peripheral Input to Respiratory Centers

Peripheral Chemoreceptors

- Detect chemical concentration of blood and cerebrospinal fluid
- Location:
 - Carotid sinus
 - At its bifurcation into the internal and external carotid arteries
 - Connected to medulla by afferent neurons in the glossopharyngeal (CN IX) nerve
- Chemical concentration of the blood is most important
 - Changing levels of CO₂, O₂, and pH of the blood
 - Sensitive to low arterial O₂ concentrations (below 60 mmHg)

Peripheral Input to Respiratory Centers: Chemoreceptors

- Peripheral chemoreceptors are very sensitive to changes in arterial pH
- ↓ arterial pH (↑ H⁺ ion concentration) occurs:
 - When arterial CO₂ levels increase
 - When lactic acid accumulates in the blood
- Therefore, \downarrow arterial pH is the most powerful stimulant for respiration
- When O₂ concentration is low, ventilation increases

Peripheral Input to Respiratory Centers: Chemoreceptors

Central chemoreceptors

- Sensitive to H⁺ ion concentration in cerebrospinal fluid
- Located in the medulla within the bloodbrain barrier
- CO₂ is able to diffuse across the blood-brain barrier and combine with water to form carbonic acid
 - This reaction releases H⁺ ions in the cerebrospinal fluid
 - CO₂ then combines with water in cerebrospinal fluid to form carbonic acid
- Stimulation of these central chemoreceptors increases respiration rate, thus increasing blood pH to homeostatic levels

Peripheral Input to Respiratory Centers: Chemoreceptors

© 2002 Pearson Education Inc., publishing as Benjamin Cummings

- Chemoreceptors maintain normal levels of arterial CO₂ through chemoreceptor reflexes
- Increased CO_2 = increased concentration of H⁺ ions (\downarrow pH)
 - This stimulates the chemoreceptors
- Decreased blood pH can be caused by
 - Exercise and accumulation of lactic acid
 - Breath holding
 - Other metabolic causes
- ↓ arterial pH causes the respiratory system to attempt to restore normal blood pH by...
 - \uparrow ventilation to decrease CO₂ levels
 - This results in an increase in pH to normal levels

Chemoreceptor reflexes

- Control over respiratory muscles is voluntary
 - Therefore, breathing patterns may be consciously altered
- Voluntary control is made possible by neural connections between higher brain centers (the cortex) and the brain stem
- Voluntary control includes...
 - Holding your breath
 - Emotional upset
 - Strong sensory stimulation (irritants) that alter normal breathing patterns

Conscious Control of Breathing

Hyperpnea

- An \uparrow in the arterial CO₂ concentration with a resultant \downarrow in CSF fluid pH
- This condition stimulates the...
 - Central chemoreceptors, and
 - Medullary respiratory centers
- Stimulates an increase in ventilation

Hyperventilation

- More CO_2 is exhaled resulting in \downarrow arterial CO_2 concentration
- This returns arterial pH to normal levels

Disturbances in Respiration

Acid-Base Disturbances in Blood

- The average pH of body fluids is 7.38
 - This is slightly alkaline, but, acidic compared to blood
 - The pH of arterial blood is 7.4.
 - The pH of venous blood and extracellular fluid is 7.35
 - The pH of intracellular fluid is 7.0
 - This reflects the greater amounts of acidic wastes and CO₂ that are produced inside cells
- Acidosis
 - Arterial blood pH less than 7.35
- Alkalosis
 - Arterial blood pH greater than 7.45

The Respiratory System in Acid-Base Homeostasis

Hydrogen Ion Concentration Regulation

- Body pH is regulated by the respiratory system through the regulation of H⁺ ion concentration in the blood
- Very important because metabolic reactions generally produce more acids than bases
- Acid-base buffers
 - Bind with H⁺ ions when fluids become acidic
 - Release H⁺ ions when fluids become alkaline
 - Convert strong acids into weaker acids
 - Convert strong bases into weaker bases
 - Examples:
 - Hemoglobin
 - Bicarbonate ions

The Respiratory System in Acid-Base Homeostasis

- Respiratory centers located in the brainstem help regulate pH by controlling the rate and depth of breathing
- Respiratory responses to changes in pH are not immediate, it requires several minutes to modify pH
- Respiratory responses to changes in pH are almost twice the buffering power of all the chemical buffers combined

The Respiratory System in Acid-Base Homeostasis

- pH disturbances result due to inadequate or improper functioning of respiratory mechanics
- Respiratory acidosis
 - The most common type of acid-base imbalance
 - Accumulation of CO_2 as the result of shallow breathing, pneumonia, emphysema, or obstructive respiratory diseases
- Respiratory alkalosis
 - Develops during hyperventilation
 - Excessive loss of CO₂
 - Treatment includes re-breathing air to increase arterial CO₂

Abnormalities of Acid-Base Balance